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ABSTRACT
Being able to use a single app across multiple devices can bring
novel experiences to the users in various domains including enter-
tainment and productivity. For instance, a user of a video editing
app would be able to use a smart pad as a canvas and a smart-
phone as a remote toolbox so that the toolbox does not occlude the
canvas during editing. However, existing approaches do not prop-
erly support the single-app multi-device execution due to several
limitations, including high development cost, device heterogene-
ity, and high performance requirement. In this paper, we intro-
duce FLUID-XP, a novel cross-platform multi-device system that
enables UIs of a single app to be executed across heterogeneous
platforms, while overcoming the limitations of previous approaches.
FLUID-XP provides flexible, efficient, and seamless interactions by
addressing three main challenges: i) how to transparently enable
a single-display app to use multiple displays, ii) how to distribute
UIs across heterogeneous devices with minimal network traffic,
and iii) how to optimize the UI distribution process when multi-
ple UIs have different distribution requirements. Our experiments
with a working prototype of FLUID-XP on Android confirm that
FLUID-XP successfully supports a variety of unmodified real-world
apps across heterogeneous platforms (Android, iOS, and Linux). We
also conduct a lab study with 25 participants to demonstrate the
effectiveness of FLUID-XP with real users.
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•Human-centered computing→ Interaction design; Ubiqui-
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1 INTRODUCTION
One of the major trends in mobile computing is the proliferation
and diversification of smart devices. Today, US households own an
average of 11 connected devices, including seven with screens to
view media content (e.g., smartphones or TVs) [46]. Accordingly,
the media consumption habit of ordinary people is transforming.
For instance, 45% of US adults often or always use smart devices
while watching TV [40].

With such a trend, a newway of interactingwithmultiple devices
has been introduced: Single-App, Multi-Device interaction paradigm.
Such a paradigm can harness the creation of novel interactions and
practical use cases across different domains ranging from enter-
tainment to productivity. For example, a user can watch a YouTube
video on a large TV screen while live chatting with other viewers
using a smartphone, or a photo editor may use a desktop for its can-
vas and a smart pad for its editing tools in a way that the toolboxes
do not occlude the canvas while editing. Moreover, the single-app
multi-device paradigm can foster the creation and consumption of
new types of content. For instance, TV series creators may provide
information or even multiple views for a single scene such that the
viewers can watch the main scene on a TV while reading informa-
tion of the characters (similar to Amazon Prime X-Ray) or looking
around other views to find Easter eggs on their smartphones.

Several techniques have been proposed to support such multi-
device interaction (see Section 9), including ScreenCasting [5, 16, 21,
49, 54], remote displays [17, 18, 43], custom multi-display apps [20,
37, 53], and FLUID [39]. Among these, FLUID stands out since
it provides a unique capability that was previously not possible—
it can distribute an app’s individual UI elements, such as video
playback buttons to different Android devices. This fine-grained UI
sharing, combined with FLUID’s support for unmodified existing
apps, makes FLUID well-suited for mobile environments. However,
FLUID has one limitation—it is unable to support heterogeneous
platforms.

Addressing this limitation is crucial since different device types
typically have different major platforms. For instance, smartphones
and tablets come with Android and iOS, laptops with Windows,
and smart TVs with Tizen, WebOS, and Android. Supporting these
heterogeneous platforms is critical to comprehensively support
multi-device interaction. However, FLUID’s design that primarily
uses UI object serialization and Remote Procedure Call (RPC) as
a medium for cross-device interaction is not feasible in such an
environment.

https://doi.org/10.1145/3447993.3483245
https://doi.org/10.1145/3447993.3483245
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This paper proposes a new cross-platform UI distribution system,
FLUID-XP (Flexible User Interface Distribution for Cross-Platform Ex-
perience)1, that extends FLUID to cross-platform environments. To
this end, FLUID-XP uses a new system design that is fundamentally
different from that of FLUID. Specifically, FLUID-XP distributes the
UI elements of an app to heterogeneous devices by solving the
following three technical challenges:
C1. How to transparently enable a single-display app to use

multiple displays.
C2. How to distribute UIs across heterogeneous devices with

minimal network traffic.
C3. How to optimize the UI distribution process when multiple

UIs have different distribution requirements.
C1: Transparent Multi-Display Support. In order to support

unmodified existing apps, we need to transparently enable a single-
display-oriented apps to use multiple displays. More specifically, we
should be able to distribute an existing app’s UIs onto multiple dis-
plays without modifying the app itself. This is challenging because
an app’s UI elements are tightly coupled with app logic; arbitrarily
distributing the UI elements can cause unexpected side effects on
the app’s behavior. Therefore, FLUID-XP provides a single-display
illusion to existing apps so that they can transparently use multiple
displays (see Section 3).

C2: Cross-Platform Multi-Device Rendering. In order to
support heterogeneous platforms, wemust distribute UIs in a platform-
independent fashion. The simplest and themostwidely usedmethod
is to distribute UIs in the form of pixels. However, transmitting the
pixels of multiple UI elements simultaneously at a high frequency
(e.g., 30 fps) generates a large amount of data. This could cause a
number of problems, including high latency and visual degrada-
tion, especially in mobile wireless networks where connections are
subject to low bandwidth, high latency, and unstable connectivity.
Therefore, FLUID-XP introduces a novel split-pipeline cross-device
graphics architecture that encodes and transmits only the minimal
set of pixels required to compose remote displays (see Section 4).

C3: Per-UI Optimization.When distributing UIs across hetero-
geneous devices and platforms, it is crucial to provide high-quality
user experience. However, it is challenging to do so since differ-
ent UIs can have various characteristics that are often conflicting.
For instance, a video UI can be loss-tolerant but delay-sensitive,
whereas a text UI can be delay-tolerant but loss-sensitive. To sup-
port such UI-dependent characteristics, FLUID-XP distributes each
UI element individually with its own optimized cross-device graph-
ics pipeline, which allows FLUID-XP to customize how it renders
and transmits a UI element. For instance, FLUID-XP can use a differ-
ent transport protocol suitable for each UI element based on their
delay or loss sensitivity. FLUID-XP can also decide where to perform
the rendering of a UI element (either locally or remotely) based on
platform and performance requirements (see Section 5).

We have implemented a prototype of FLUID-XP and show that
FLUID-XP can transparently provide single-app multi-device func-
tionality for unmodified legacy Android apps across heterogeneous
platforms (Android, iOS, and Linux). Our coverage evaluation with
the prototype shows that FLUID-XP achieves complete transparency
and high flexibility in supporting various single-app multi-device

1See https://youtu.be/VoUWU9aSC2M for our demo video.

use cases using 19 legacy apps from Google Play [23] and one cus-
tom app. Our performance evaluation shows that FLUID-XP operates
seamlessly across heterogeneous mobile platforms with low latency
and high visual quality using only minimum network usage and
power consumption compared to other approaches (e.g., screen
mirroring). Lastly, we conduct a usability study to demonstrate the
effectiveness of FLUID-XP with real users.

2 SYSTEM OVERVIEW
2.1 Background
Virtual Display. A virtual display is a separate logical display
whose contents are rendered onto an off-screen buffer instead of
a physical display. Each virtual display has its own independent
UI tree and graphics pipeline. A virtual display does not have a
corresponding physical display itself, but it can be explicitly visual-
ized via an external display or other software that handles virtual
displays.

Graphics Pipeline. Android graphics pipeline is composed of
five sequential stages: traversal - clipping - rendering - compositing
- displaying. 1) The traversal stage traverses the UI tree to measure
and calculate the exact size and layout position of each UI element.
The root node of the UI tree has size information of the display
and this is used to make the UI properly fit into the display’s form
factor. 2) The clipping stage selects a set of partial regions of the
display that needs to be redrawn, called a damaged area. Then it
creates a list of GPU commands for redrawing the damaged area.
3) The rendering stage re-orders and batches the generated GPU
commands for optimization and then executes them to generate
pixel data of the damaged area. 4) The compositing stage overlays
the newly drawn pixel data of the damaged area to the previous
frame. 5) The displaying stage visually displays the composited
frame to the hardware screen.

2.2 SystemWorkflow
FLUID-XP adopts a four-phase workflow in supporting the single-
app multi-device interaction. It consists of a host device, where a
user installs and runs regular apps, and one or more guest devices,
where the user can distribute the UI elements of any app running
in the foreground. FLUID-XP requires platform modification on the
host device, but for guest devices, a user needs to install only one
FLUID-XP wrapper app on each guest device without modifying the
platform.

Pairing. Like any other wireless display system, FLUID-XP re-
quires pairing between the host and guest devices. The host searches
for nearby guest devices using Multicast DNS (mDNS). Upon dis-
covery, a connection is established between the devices through
password-based authentication.

UI Selection. FLUID-XP provides two methods for specifying
which UI elements to distribute across devices. i) Prior to the execu-
tion of an app, users or developers can write down a list of UI ele-
ments and a UI layout for cross-device distribution on a pre-defined
metadata file (e.g., layout.xml). ii) During the app execution, a
user can enter a special UI distribution mode and dynamically se-
lect the UI elements to distribute by simply touching them on the
screen.

https://youtu.be/VoUWU9aSC2M
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Figure 1: FLUID-XP Design Overview
UI Partitioning & Distribution. Once the device pairing and

UI specification are done, the user accomplishes UI distribution by a
single tapping of a button on the FLUID-XP wrapper app on a guest
device. To this end, FLUID-XP mainly performs the following three
tasks transparently: i) Multi-display: FLUID-XP internally prepares
the UI elements to be distributed on multiple displays, ii) Multi-
device rendering: FLUID-XP host device then renders the UI elements
for multiple displays and devices, and iii) UI casting and displaying:
FLUID-XP casts the result of the rendering to each guest device. The
FLUID-XPwrapper app then displays received UI elements according
to the layout.

UI Interaction. Once UI elements are distributed and displayed
on one or more guest devices, FLUID-XP and its wrapper app en-
able users to interact with the UI elements on all devices without
requiring any app code modification.

2.3 System Design Overview
In order to enable the workflow described in Section 2.2 and ad-
dress the three challenges (C1, C2, and C3) listed in Section 1,
FLUID-XP adopts three design choices—single-display illusion, split-
pipeline cross-device graphics architecture, and per-UI optimized
distribution (see Figure 1).

Single Display/UI-Tree Illusion. In order to provide trans-
parency in expanding single-display app to multi-displays (C1),
FLUID-XP gives an illusion to existing apps that they are using a
single display when in fact they are using multiple displays. Apps
do not need to be modified in any way to leverage multiple displays,
and all UI elements behave as if they were placed on a single display.
In order to accomplish this, FLUID-XP takes a new approach to how
a UI tree is managed. In essence, FLUID-XP internally creates a guest
UI tree for each display ( 1 in Figure 1), determines which display
a UI element is to be displayed on, and maps each UI element on
the corresponding guest UI tree. In doing so, FLUID-XP still presents
a single UI tree abstraction to the app and hides the existence of
multiple guest UI trees. At the same time, the rendering system rec-
ognizes the guest UI trees and renders each UI tree independently.
The advantages of this approach are that i) a developer can use
the familiar single-display programming model when developing
a new app that leverages multiple displays, ii) existing apps can

be supported as-is, and iii) the rendering system can render each
guest UI tree separately for a particular display as needed without
worrying about how to deal with other UI elements that should not
be displayed on that display.

Split-Pipeline Cross-Device Graphics Architecture. FLUID-
XP aims to distribute different guest UI trees not only across multiple
devices with the same platform (e.g., two Android devices) but also
across devices with different platforms (e.g., Android and iOS) in
the most network efficient manner (C2). In order to accomplish
this, FLUID-XP examines the existing graphics pipeline and consid-
ers the entire design space as detailed in Section 4. Based on the
analysis, ideal stages are identified in the graphics pipeline where
the division of labor should occur between a host device and guest
devices. Specifically, FLUID-XP splits the graphics pipeline so that
traversal-clipping-rendering stages are executed on the host device,
and the compositing-displaying stages are executed on the guest
devices. FLUID-XP’s design supports a wide range of heterogeneous
platforms, while minimizing the amount of UI data transfer among
devices without incurring extra computational overhead.

Per-UI Optimized Distribution. It is highly challenging to
support a high-quality user experience in cross-device UI distri-
bution, particularly when distributing multiple UIs with conflict-
ing distribution requirements. User experience can be seriously
degraded when the system fails to satisfy the distribution require-
ment, thereby hurting visual fidelity and interactivity compared to
the case of a single device. To address this challenge (C3), FLUID-XP
employs a flexible architecture that allows per-UI graphics pipeline
processing ( 2 in Figure 1). FLUID-XP leverages this flexible ar-
chitecture to handle individual UI elements differently according
to their characteristics, such as delay sensitivity, loss tolerance,
and platform dependency. For instance, FLUID-XP uses a different
network transmission protocol for each UI element suitable for
its characteristics ( 3 in Figure 1) and implements a FLUID-like
distribution protocol that performs remote-side rendering for UI
elements with less platform dependency ( 4 in Figure 1). Our eval-
uation in Section 7 shows that the one-size-fits-all strategy does
not meet the different requirements of individual UI elements and
is therefore unable to provide high-quality UX.
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3 TRANSPARENT MULTI-DISPLAY
EXPANSION

Many mobile operating systems provide APIs for developing multi-
display apps (e.g., Android: Presentation, iOS: rootViewController,
Tizen: Window). However, utilizing such an API puts a significant
burden on the developer; specifically, it requires them to manage
multiple UI trees and write an app that can adapt its UI according
to the presence of an external display. In fact, according to our
analysis, only 1% of smartphone apps are utilizing such APIs2.

This section describes how FLUID-XP transparently expands ex-
isting single-display apps to multi-display apps without enforcing
extra engineering burdens. In particular, FLUID-XP partitions the
UI elements of an app, designed for a single display, into multi-
ple displays while maintaining the single-display programming
abstraction for transparency.

3.1 Multi-Display Layout Interfaces
FLUID-XP provides two types of interface, allowing a user or de-
veloper to specify minimal information needed for UI distribution:
which UI elements to distribute in which layout.

Runtime UI selection: This interface allows users to dynam-
ically select UI elements to distribute during the execution of an
app. A user can tap with three fingers to enter a special mode, then
simply tap individual UI elements to select, then tap again with
three fingers to exit the mode.

Metadata XML File: For more detailed specification, a devel-
oper can write a metadata XML file specifying which UI elements
to distribute and how to lay them out. It is as simple as writing a
layout XML file for Android apps.

3.2 Single-Display Illusion
FLUID-XP maintains a single-display illusion to an app so that all UI
elements behave as if they were displayed on the same display. In
order to accomplish this, FLUID-XP internally manages two types
of UI trees. One type is a single logical UI tree that is exactly the
same as the original UI tree. This UI tree is used as a single-display
abstraction and this is the only UI tree that an app can interact
with. The other type is guest UI trees and FLUID-XP creates one
guest UI tree for each additional display. FLUID-XP creates these
guest UI trees only when a user triggers UI distribution and uses
them for UI rendering and distribution. If the user directly selects
target UI elements at run time, FLUID-XP identifies them, creates
corresponding guest UI trees, and maps the UI elements to their
guest UI trees according to which display each UI element needs to
be displayed. If there is a pre-defined layout file, FLUID-XP constructs
guest UI trees and maps UI elements based on the file.

Conceptually, managing logical and guest UI trees means creat-
ing two nodes that represent the sameUI element, one for the logical
tree and another for a guest UI tree. This could lead to consistency
issues across the two nodes and increased memory consumption.
Thus, our implementation only creates a single node for each UI
element and uses two types of edges to correctly manage logical
and guest UI trees. The first type is logical edges and FLUID-XP uses
them to represent a logical tree. The second type is guest edges
2We investigated Google PlayStore’s top 5,866 apps, and only 66 of them uses multi-
display APIs at the time of writing

Stage Solutions Input Unit OS Dependency
Traversal [39] UI Objects O
Clipping [10, 56] UI Attributes O
Rendering [8, 36, 41] Graphics Primitives O

Compositing FLUID-XP Pixels (delta) X

Displaying [33, 34, 48] Pixels (screen) X[3, 5, 21] Pixels (delta)
Table 1: Possible offloading points formulti-device graphics
pipeline
and FLUID-XP uses them to represent guest UI trees. FLUID-XP then
exposes only the logical edges to the app as the single-display ab-
straction, and internally uses the guest edges for UI rendering and
distribution. We note that for a guest UI tree, FLUID-XP still needs
to create additional nodes to form a proper tree, i.e., intermediate
nodes and a root node, since only leaf nodes can represent visible
UI elements.

4 CROSS-PLATFORMMULTI-DEVICE
GRAPHICS PIPELINE

FLUID-XP aims to adopt a multi-device graphics pipeline that sup-
ports a wide range of heterogeneous platforms with minimal net-
work usage. Once UI elements are mapped to the guest UI tree for
distribution, FLUID-XP renders the guest UI tree and displays them
on guest devices. This section examines various options available to
design a multi-device graphics pipeline and introduces techniques
to support it efficiently, namely per-UI Rendering and guest-side
composition.

4.1 Split-Pipeline Architecture
FLUID-XP employs a split-pipeline model for transparent cross-
device rendering, and it chooses to split at the compositing stage
in the graphics pipeline. This means that FLUID-XP runs traverse,
clipping, and rendering on a host device and compositing and dis-
playing on a guest device. The reason is that this design is most
suitable in terms of both heterogeneous platform support and per-
formance. As shown in Table 1, there are several candidates of the
splitting point, and they are subject to different characteristics in
various aspects, such as performance, platform-dependency, the
range of UIs supported, and development cost.

The first three stages, traversal, clipping, and rendering, take
platform-dependent data as input. Specifically, UI objects, UI at-
tributes, and graphics primitives are all part of the input but cannot
be shared directly between different platforms. Although one could
develop a translation layer for each platform to support interop-
erability, it is extremely challenging to fully translate the unique
features of individual platforms (e.g., developer-defined custom UIs)
to maintain the same look-and-feel across heterogeneous platforms.
Due to this reason, it is not ideal to split the graphics pipeline at
any of these stages.

On the other hand, the last two stages, compositing and dis-
playing, are suitable for cross-platform support since their input is
pixels, a universal, platform-independent data format used by all
display devices. Thus, if we split at any of these two stages, we can
send raw pixels to a guest device and display the pixels on the guest
device’s screen to maintain the same look-and-feel. Note that the
displaying stage takes all pixels of the entire screen as input, while
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the compositing stage takes only the pixels that need to be updated,
i.e., the delta between what is currently displayed and what needs
to be displayed at the next screen refresh cycle.

Most solutions for cross-platform and multi-device interaction,
such as mirroring tools [16, 21, 43], mainly split at the displaying
stage, meaning that they only run the displaying stage on a guest
device. This approach comes with less implementation complexity,
but is subject to a large amount of pixel data to transfer between
devices since the input to the displaying stage is all pixels of the
entire screen. A few attempts [33, 34, 48] have been made to reduce
the amount of data transfer by performing diff analysis to find the
delta between consecutive display frames. However, the compu-
tational overhead for a diff analysis can be substantial due to the
high resolution of modern mobile devices. For example, Pixel 4 XL
has a resolution of 1440x3040, and it takes 80 ms to analyze the
delta between two frames by a pixel-by-pixel comparison. If the
resolution is scaled down to reduce the amount of computation, its
accuracy could go down [28].

On the other hand, the input to the compositing stage is only the
pixels that need to be updated. Thus, splitting at the compositing
stage does not require any diff analysis and it is an ideal strategy
to run the compositing and displaying stages on a guest device.
However, a significant challenge is how to do this in a device-
independent fashion, especially when dealing with a device that
has a GPU. If there is a GPU, then it is the proprietary GPU software
stack that runs both rendering and compositing as a black box,
which in turn makes it impossible to split the graphics pipeline at
the compositing stage.

To address this challenge, FLUID-XP leverages the virtual display
abstraction that exists on mobile platforms under different names
(e.g., VirtualDisplay on Android, UIWindow on iOS, etc). Each vir-
tual display has an individual UI tree and runs a separate graphics
pipeline with unique display settings (e.g., resolution, orientation).
In addition, each graphics pipeline triggers its rendering process
only when pixels on its corresponding display need to be updated.
Thus, for every UI element to be distributed, FLUID-XP creates a new
virtual display and attaches it to the virtual display’s UI tree. Then,
whenever a UI element is updated, only the graphics pipeline corre-
sponding to the UI triggers the rendering. This generates only the
pixels for the updated UI element, i.e., there is no need to perform
a separate diff analysis to locate the updated pixels

One caveat is that the update granularity here is not at the level
of pixels but at the level of virtual displays (i.e., UI element). This
means that if FLUID-XP assigns a single UI element to a virtual dis-
play and a small portion of a UI element changes, FLUID-XP needs to
send all the pixels that belong to the UI element. In addition, mobile
platforms often restrict the number of per-app virtual displays to a
certain number (e.g., six for Android). Thus, FLUID-XP sometimes
has to assign multiple UI elements to a single virtual display. If that
happens, FLUID-XP needs to send all pixels that belong to the virtual
display even when a single UI element is updated. Yet, based on
our observations, it is very rare for a UI element to change only
small portion of itself. Instead, in most cases, a group of UIs work-
ing together to serve a common purpose change all at once. For
instance, the comments UI in YouTube is in fact a group of dozens
of text views, and when a user scrolls the comments UI, all text
views move together as a single unit.

Depending on how UI elements are assigned on virtual displays,
FLUID-XP sends pixels from multiple virtual displays to a single
guest device so that they are processed together through the com-
positing and the display stages. Currently, FLUID-XP’s default policy
is to assign a group of UI elements with similar characteristics to-
gether on the same virtual display. For example, UI elements with
low-update frequencies (e.g., buttons and images) and UI elements
with high-update frequencies (e.g., videos). As we detail in Section 5,
this enables per-UI optimization. Other, more sophisticated policies
could be possible and we leave it as a future work.

Another benefit of using virtual displays is that we can use a
guest device’s resolution for each corresponding virtual display.
Thus, once a host generates pixels, they are already suitable to
display on each guest device without requiring re-translation. Once
virtual displays finish generating new pixels for updated UI ele-
ments, FLUID-XP encodes the pixels and sends them to their corre-
sponding guest devices along with their layouts as described in the
next section.

4.2 Guest-side Composition & Interaction
Upon receiving encoded pixels and layout information of each
virtual display, the FLUID-XP wrapper app on a guest device takes
the following two steps to properly composite and display multiple
streams of pixels on its display.

First, it creates a raw pixel container named a surface (following
Android’s terminology). A surface is essentially an image buffer and
the FLUID-XPwrapper app uses the size and position from the layout
received from the host when creating a surface. If a layout needs to
change, the host can send a new layout along with new pixels, and
the FLUID-XP wrapper app adjusts the layout of the corresponding
surface accordingly each time. We note that a FLUID-XP host device
renders each virtual display using the corresponding guest device’s
screen resolution. Therefore, there is no need to adjust or translate
pixels for different resolutions. As we detail in Section 6, FLUID-XP
performs some minimal pixel adaptation on guest devices since het-
erogeneous platforms use different coordinate systems and scaling
methods to interpret a pixel.

Second, if the FLUID-XP wrapper app needs to display multiple
(host-side) virtual displays as directed by the host, the FLUID-XP
wrapper creates multiple surfaces (one for each virtual display)
and composites them as a single frame to display. Each surface
decodes its own pixels individually and can use a different streaming
protocol as described in Section 5.

Furthermore, FLUID-XP enables users to seamlessly interact with
UI elements distributed to all guest devices. To do so, the FLUID-
XP wrapper app translates and forwards each input event to the
host device. Then, the host device identifies the target UI using the
layout information, and forwards the event to the corresponding
virtual display.

5 PER-UI OPTIMIZATION
FLUID-XP adopts a flexible system architecture to handle individual
UI elements differently based on their characteristics and require-
ments. This allows more fine-grained optimization of multi-device
rendering by using a mixture of state-of-the-art multi-device ren-
dering techniques (e.g., FLUID, Chromecast, streaming protocols).
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This section describes how the FLUID-XP prototype implements
different multi-device rendering techniques (i.e., per-UI streaming
and native UI rendering) and utilizes them appropriately for UIs
with different characteristics.

5.1 Per-UI Streaming
When distributing UIs across devices, we aim to support a high-
quality UX. However, It is challenging to achieve both high visual
quality and low latency, in particular, in mobile wireless networks
due to non-negligible packet loss and delays. To resolve this issue,
FLUID-XP takes a flexible approach that employs different transmis-
sion protocols for different sets of UI elements to satisfy various
requirements.

Video streaming apps (e.g., YouTube) put together different types
of UI elements with different performance requirements on the
same screen. Dynamic UIs such as video windows are frequently
updated and allow some distortion due to data loss. However, they
are sensitive to delays such as video freezes. On the other hand,
static UIs that are updated relatively slowly, such as video lists or
chat windows, have opposite characteristics: delay-tolerant but loss-
sensitive. In general, it is difficult to meet such various requirements
while using only one transmission protocol. For instance, TCP,
which provides a loss-free data transmission service, can support
static UIs without any distortion but cannot satisfy high update
frequencies of dynamic UIs due to its slow transmission speed. On
the other hand, UDP can stream dynamic UIs at high transmission
rates, but it is not suitable for streaming static UIs because image
distortion may occur due to frequent traffic loss.

In this regard, we allow UIs with different characteristics to have
different transmission protocols, thereby optimizing the transmis-
sion efficiency across all UIs on the screen. As explained in the
previous section, FLUID-XP adopts per-UI graphics pipelines by as-
signing different subsets of UI elements to different virtual displays.
We leverage such design to put a subset of UI elements with sim-
ilar characteristics, such as dynamic or static UIs, onto the same
virtual display. This way, when transferring the rendering results
(i.e., pixels) of each different virtual display, FLUID-XP can employ a
different transmission protocol suitable for the characteristics of
UI elements that are assigned to the virtual display.

5.2 Native UI Rendering
FLUID-XP is designed primarily from a platform-independent per-
spective. However, some platform-specific features can easily lead
to significant performance improvement. FLUID-XP is designed to
easily extent in this direction. As an example, we introduce a native
UI rendering technique.

There is a certain set of UI elements that are common to all
GUI systems, namely standard UIs. Since these UIs have very well-
defined looks and purposes, the UI attributes necessary for repro-
ducing them are obvious. For instance, a button UI needs text and
a color, and a text UI needs text, a text size, and a text color.

FLUID-XP can assign the standard UIs onto a single virtual display
and offload the handling of the virtual display to a guest device from
the clipping stage on. That is, the rendering of the standard UIs takes
place on the guest device. To support this, FLUID-XP carries out a few
tasks for standard UIs. The host device marks their virtual display

as invisible to avoid host-side rendering and sends their graphical
attributes to the guest device whenever any of them is updated.
FLUID-XP wrapper app then renders the graphical attributes using
the existing, native UI rendering method of the guest device. Such
guest-side native UI rendering can significantly improve the user
experience by avoiding the computation and networking costs of
transferring pixel data. However, this approach cannot be applied
to non-standard UI elements.

6 IMPLEMENTATION
User Input Handling. In order to support seamless user inter-
action, FLUID-XP implements input translation between devices.
Any input given to a guest device is translated to appropriate in-
put events and transmitted to the host device. We will not discuss
the translation mechanism in detail for it is a well-known and
widely-used technique (e.g., Android Emulator [24], SCRCPY [16],
Vysor [54]).

H.264 RTP Streaming. When streaming each virtual display
as a form of pixels, FLUID-XP uses H.264 video encoding [12], and
Real-time Transport Protocol [42]. Specifically, for each virtual dis-
play, FLUID-XP creates a new set of H.264 hardware encoder and
RTP packetizer. Then for each encoder and packetizer, upon receiv-
ing newly rendered raw pixels, FLUID-XP automatically encodes,
packetizes, and transmits encoded pixels to the guest device. Then
the guest device’s wrapper app depacketizes, decodes, and displays
each streamed H.264 packets at their designated positions. In doing
so, it uses the native hardware decoder of the guest device.

Screen Coordinate & Frame Buffer Scaling. FLUID-XP re-
designs a multi-device graphics pipeline toward cross-platform.
Yet, there are some issues to be addressed to maintain the same
shape across heterogeneous platforms. Different platforms have
their own coordinate systems and scaling methods. For instance,
Android uses density-independent pixels (dp) as the base coordinate
system and scales items according to pixel density. iOS employs
a different coordinate unit, point, and adopts a device-dependent
scale factor to convert points to pixels. FLUID-XP implements a
coordinate-conversion system that translates different coordinate
systems between Android and iOS. FLUID-XP also implements frame
buffer scaling to resolve differences in DPI (density-per-inch) be-
tween devices.

7 EVALUATION
We have implemented a FLUID-XP prototype to demonstrate and
evaluate its full functionality across heterogeneous devices for un-
modified existing apps. We have implemented the FLUID-XP host
prototype on Android Open Source Project (AOSP) and the FLUID-
XP guest wrapper app on three different platforms: Android, iOS,
and Ubuntu.

For our experiments, we use Google Pixel 4 XL (AOSP v10) smart-
phone as a host device, and Google Pixel 4 XL (Android), Sam-
sung Galaxy Tab S7 (Android), Apple iPhone 11 (iOS), and Lenovo
ThinkPad X1 Carbon (Ubuntu) for guest devices. We connect all
devices on the same Wi-Fi network with a single access point. The
access point provides a throughput of 140 Mbps, and a round-trip
time (RTT) with the median, average, and standard deviation of
4.27, 10.55, and 13.99 ms, respectively.
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Table 2: A list of use case scenarios and apps for coverage test.

7.1 Coverage
In order to see how well FLUID-XP supports existing unmodified
apps for transparent UI distribution, we evaluate 19 apps from Goo-
gle Play and 1 proof-of-concept (POC) app (‘Sports Live’) in 11
use case scenarios as shown in Table 2. The POC app is included
as an example of emerging multi-view video apps. We have con-
firmed with this experiment that FLUID-XP successfully supports
all 20 apps in various multi-device use case scenarios in a platform-
independent manner. To further explore the usability of FLUID-XP,
we provide user study results with a few representative apps and
use case scenarios in Section 8.

The ‘Network Usage’ column in Table 2 shows the total amount
of data transferred for one minute when FLUID-XP streams the
whole screen and when it does only a subset of UIs described in the
‘Corresponding UIs’ column. The ‘Network Usage Saving’ column
shows how much saving FLUID-XP can achieve with a fined-grained
streaming approach, reducing the unit of streaming from the whole
screen to selective UI elements. Our experiment results show that
FLUID-XP can significantly reduce the amount of network data
transferred depending on use case scenarios.

7.2 Performance
We evaluate the performance of FLUID-XP for its seamless UI dis-
tribution. Unless stated otherwise, we repeat each experiment ten
times, and use an H.264 encoder with a 1440x3040 resolution, a 8MB
bit-rate, 30 fps, and one-second key-frame interval. Furthermore,
to accurately measure the latency between the host and the guest,
we synchronize the clocks of the two devices using a Desktop RTP
Server through a wired connection, with an average clock error of
0.62 ms.

UI Streaming Latency. Figure 2 compares the streaming la-
tency of FLUID-XP’s fine-grained UI distribution and whole-screen
distribution for each of the 20 apps listed in Table 2. We define
latency as the additional time required to display UI elements on
a guest device compared to the single-device case. We measure it
as the delay from when FLUID-XP finishes host-side rendering to
when FLUID-XP starts guest-side displaying. The UI distribution

Figure 2: UI streaming latency

latency is represented as a bar graph, with the latency further bro-
ken down into encoding, decoding, and network transfer time. The
whole-screen distribution latency is represented as a yellow line
graph. We measure each latency component through system-level
logging.

In most cases, UI distribution shows slightly lower streaming
latency than the whole-screen distribution. Still, in some cases, one
of the two shows noticeably higher latency than the other. This
is because the streaming latency depends mainly on the size of
each frame, and FLUID-XP does not take part in determining the
frame size. Specifically, when displaying a UI element on a guest
device, FLUID-XP re-scales the UI according to the resolution of the
guest device and the preference of its user. Thus, the frame size of
a UI element is entirely dependent on this re-scaling. For instance,
FLUID-XP’s use case scenario of Twitch and LiveMe Pro is to watch
each app’s chatbox UI in full screen on the guest device. This scales
each app’s chat UI to the full-screen resolution, which results in an
increased frame size (40 KB and 48 KB, respectively) compared to
the SCRCPY that does not re-scale (15 KB and 14 KB, respectively).
Nevertheless, considering that the safe boundary for a satisfactory
streaming experience is 160ms [9], FLUID-XP distributes UI elements
on different devices fast enough for interactive use.

Furthermore, we note that Android’s H.264 encoder incurs extra
VSync [19] wait latency that is unrelated to actual encoding, and
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Figure 3: UI response time

this is reflected on our encoding latency results. Android’s H.264
incurs this extra latency because it starts the encoding of newly-
rendered pixels only when it receives a new VSync signal, which
is refreshed at a regular rate. Pixel 4 XL used in our experiments
has a 60 Hz VSync refresh rate, which means that Android’s H.264
encoder has an 8 ms of the average waiting time for a new VSync
signal before it starts encoding. VSync rates are higher on other
devices (e.g., 120 Hz for Samsung Galaxy 21 [45]) and FLUID-XP will
have shorter overall encoding latency on those devices.

UI Response Time & Native UI Rendering. To evaluate the
impact of native UI rendering, Figure 3 compares the average re-
sponse times of different UI elements in five configurations: the
single-device case (denoted by “1”), native UI rendering with An-
droid, iOS, and Ubuntu guest devices (“A”, “i”, and “U”), and UI
streaming with an Android guest device (“S”). We measure the re-
sponse time as the delay from when the user makes a touch input
to the guest device to when the guest device finishes displaying the
result of the touch input, which is inclusive of the time required
for host-side input event handling. The figure shows that native
UI rendering reduces the response time significantly compared to
the pixel streaming case, since it can avoid encoding and decoding.
It is also interesting to see that the native UI rendering cases are
comparable to the single-device case.

Figure 3 shows the difference in rendering latency across dif-
ferent platforms. The results show that the rendering latency is
heavily affected by how each platform’s graphics pipeline works.
In the Android graphics pipeline, input event handling, UI tree tra-
versal, and rendering are tightly synchronized with the periodic (60
Hz) VSync signals. Therefore, Android Graphics pipeline’s average
VSync wait time is 24 ms. However, iOS (120Hz input VSynz, 60Hz
Render VSync) waits only 4 ms for input handling and 8 ms for
the rendering, and therefore has average VSync wait time of 12 ms.
Furthermore, the VSync latency for the Ubuntu is not included in
the measurement because the VSync latency is unmeasurable in
the user space of Ubuntu. Thus, we measure the rendering latency
in our Ubuntu wrapper app as best as we can and approximate the
precise latency. In order to evaluate the streaming performance
of FLUID-XP across heterogeneous platforms, we also conduct UI
streaming experiments with iOS and Ubuntu guest devices. For
iOS, the average response times of Button, TextView, EditText, and

Figure 4: Data usage comparison

SeekBar are 139.5, 135.3, 114.7, 124.4 ms, respectively, and those
of Ubuntu are 99.93, 96.65, 96.21, and 91.19 ms each. As explained
previously, the measurements for Ubuntu do not include rendering
computation time and platform-specific delays. The experiment
results are comparable to the Android case, and it shows that stream-
ing pixels is a viable way to distribute UI across different platforms.

7.3 Network Usage
Figure 4 compares the amount of network usage across FLUID-
XP and two popular screen streaming apps, Chromecast [21] and
SCRCPY [16] (46.1k GitHub stars), for five scenarios from Table 2.
The numbers shown in the graph indicate the amount of network
data that FLUID-XP uses only for the static UIs. For fair compari-
son, we take the following two steps. First, since Chromecast and
SCRCPY only support full screen mirroring, we distribute all UI
elements with FLUID-XP as well. Second, we modify the source code
of SCRCPY such that FLUID-XP and SCRCPY use the same encoder
with the same configurations. On the other hand, our setup with
Chromecast is not favorable to FLUID-XP or SCRCPY due to the
limitation of Chromecast—it only supports the maximum resolu-
tion of 510x1080, which is 1/9 times smaller than the resolution for
FLUID-XP and SCRCPY (1440x3040). With these configurations, we
run our experiments for 1 minute for the three network-heavy apps
(YouTube, Twitch, and Instagram) and 10 minutes for the other two
apps (Google Maps and Nike Run Club).

Our results show that FLUID-XP consumes 20% to 69% lower
network usage compared to other streaming solutions for the five
scenarios. Though FLUID-XP and SCRCPY use the exact same en-
coder configuration, the main reason for such a difference is that
SCRCPY streams the entire screen even when only one UI element
is updated, while FLUID-XP only transmits the updated UI element.
FLUID-XP reduces network traffic significantly when dynamic and
static UIs have a large difference in update frequency as in the case
of video apps (e.g., YouTube, Twitch, and Instagram). On the other
hand, the benefit of FLUID-XP gets smaller for Google Maps and
Nike Run Club, where the update frequencies of UIs are similar.

When compared to Chromecast, it is noteworthy that FLUID-XP
has lower data usage in all five cases even though Chromecast
supports only 1/9 resolution compared to FLUID-XP. Furthermore,
considering that FLUID-XP is capable of selectively distributing
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Figure 5: Streaming quality: (a) latency and (b) visual fidelity

partial UI elements, FLUID-XP’s real world data usage will be smaller
depending on which UIs to distribute.

7.4 Streaming Quality Assessment
Figure 5 shows how well FLUID-XP can meet the different require-
ments of individual UI elements with per-UI streaming discussed
in Section 5. We run our experiments with an in-house test app
that consists of two UIs: one dynamic delay-sensitive UI (video)
with an update frequency of 30 fps and one static loss-sensitive UI
(video description text) that does not change after its first render.
Our experiments are conducted under three different transmission
schemes: the whole screen is encoded and transmitted using “TCP”
only or “UDP” only, while FLUID-XP distributes UIs separately by
transmitting the dynamic UI through UDP and the static UI through
TCP. In order to evaluate the impact of the different schemes in dif-
ferent network states, we emulate packet loss using iptables [15]
that drops packets according to the given packet loss rate. We use
two metrics: the UI streaming latency and Mean Squared Error
(MSE) [27, 52].

Figure 5 (a) shows that, as the packet loss rate increases, the la-
tency for TCP increases exponentially, by far exceeding the average
latency of 160 ms, a maximum packet delay latency required for sat-
isfactory video streaming [9]. whereas UDP and FLUID-XP (Dynamic
UI) maintain a delay around 160 ms even at the 12% packet loss rate.
Figure 5 (b) shows that TCP and FLUID-XP (Static UI) maintain 0
MSE regardless of the packet loss rate, due to its lossless transmis-
sion mechanism. On the contrary, UDP’s MSE increases rapidly due
to the high distortion of each frame. 14 MSE, a value corresponding
to 25 Peak Signal-to-Noise Ratio (PSNR), is an acceptable image
quality threshold [50] and UDP exceeds the threshold even at the
1% loss rate. In the figure, FLUID-XP(Whole Screen) represents the
MSE of the entire screen at each frame update of the dynamic UI.
As we can see, its rate of increase is much smaller than that of
pure UDP, and maintains excellent quality up to 4% packet loss rate.
This is because FLUID-XP significantly reduces the network usage
of the test app (up to 50%), similar to what FLUID-XP does for other
apps discussed in Section 7.3. Furthermore, frame distortion due to
packet loss only affects the dynamic UI.

Overall, we observe that TCP guarantees high visual fidelity for
all network environments, but due to its exponentially-increasing
delay, the user experience drops to the level where the total time the

Figure 6: Energy Consumption

video freezes is sometimes longer than the playing time (depending
on the loss rate, we see 14–91 s cumulative freeze durations for
the frames that are longer than 160 ms). UDP can minimize such
video freezing (4.4–26 s), but due to its high distortion, reading the
video description (i.e., the static UI) is nearly impossible. FLUID-XP,
on the other hand, benefits from the advantages of both protocols
by transmitting the video UI through UDP, minimizing the video
freeze (4.4–24 s), and at the same time, providing lossless quality
to the video description text by transmitting it through TCP. In
this particular scenario, after the 6% packet loss rate, both TCP and
UDP cannot provide a proper user experience due to either delay
or distortion, whereas FLUID-XP can still provide a moderate user
experience.

7.5 Energy Consumption
We also measure the energy consumption of FLUID-XP. We calculate
the energy consumption by reading the current and voltage infor-
mation from the /sys/class/power_supply/battery/3 [29], which is
commonly used to measure the power consumption of smartphones
with a non-removable battery[4, 11, 13, 25, 26, 31, 32] and has er-
ror rate less than 10%4. We use the display brightness of 100% on
all devices and always start our experiment with a fully charged
battery.

Figure 6 compares the average energy consumption of FLUID-
XP host and guest devices when executing Twitch for one minute.
Twitch has two main UIs (a video UI and a text chatbox UI), and
we test three scenarios for cross-device distribution: using both
UIs (“Fullscreen”), the video UI only (“Dynamic”), and the chat UI
only (“Static”). Note that in the “Fullscreen” scenario, FLUID-XP dis-
tributes the UIs using the Per-UI Streaming technique (in Section 5).
For comparison, we compute the average energy consumption of
the host device when using only a single device (“Single”) and when
using SCRCPY to distribute the whole screen content. For SCRCPY,
we use the same encoder configurations as in Section 7.3.

3Power Management Integrated Circuit (PMIC) periodically writes power related
measurements (e.g., voltage, current, battery capacity) with error rate of ±1%.
4The PMIC used in our experiment has 3hz frequency. According to Nguyen et al.
(2016), the error rate of energy consumption calculation using PMIC of frequency 2hz
is less than 10% [38].
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Performance Usefulness SatisfactionApplication [0, 6] [-3, 3] [0, 6]
YouTube 3.72 1.88 4.32
Twitch 5.28 2.28 4.96
Painter 4.96 1.88 4.56

Sports Live 5.41 2.18 5.05
Google Meet 4.88 2.20 5.12

Table 3: User Study Results Comparison between Apps

The results show that SCRCPY uses 49% more energy than the
single device use case. On the other hand, FLUID-XP’s energy con-
sumption differs depending on the scenario (i.e., which UI to dis-
tribute). In the case of distributing only the chatbox UI (”Static UI”),
the FLUID-XP host device consumes only 13% more energy, and the
guest device consumes 34% less energy than the single device use
case. This is because FLUID-XP significantly reduces the frequency
of encoding and network transmission when distributing a UI with
a low update frequency (e.g., the chatbox UI with 1 fps).

When distributing the video UI (”Dynamic UI”) or the entire
screen, similar to SCRCPY, both FLUID-XP host and guest devices
use more energy than the single-device use cases. However, con-
sidering that SCRCPY is a state-of-the-art screen distribution app,
and its distribution mechanism is widely-used in other systems [5,
43, 44], we assume that this level of energy consumption in return
for multi-device interaction is acceptable to the users. One thing to
note is that when streaming the entire screen, FLUID-XP’s per-UI
streaming technique (in Section7.4) only consumes no extra energy
compare to SCRCPY despite its relatively complex structure and
high streaming quality.

8 USABILITY STUDY
We further evaluated the effectiveness of using FLUID-XP through a
usability study.We selected five different apps to use on our Android
host device. As guest devices, we used different OSes (Android, iOS,
and Ubuntu) to create different user experiences. The goal of our
evaluation is to assess the perceived performance, usefulness, and
satisfaction of using FLUID-XP across different types of apps.

8.1 Participants and Study Procedure
We recruited 25 participants (10 female, 15 male, mean age 25.56,
stdev=4.50, max=38, min=20) through an online community posting.
Each study session was 40 minutes long, and the participants were
paid approximately 9 USD. Each participant was given a task sce-
nario for each app. They were asked to use all five apps in sequence,
first using a single device and next using two devices powered
by FLUID-XP. Users were given Likert scales to mark their scores
for questions asking the perceived performance, usefulness, and
satisfaction of using FLUID-XP. The study ended with a post-survey
asking their thoughts on using FLUID-XP. To ensure safety during
the COVID-19 pandemic, we asked all participants and our staff to
wear masks during the study. We measured all participants’ body
temperatures, which were within the normal range. We note that
the recruitment and the experiments were in accordance with our
institution’s IRB policies.

Application Most useful (%) Least useful (%)
YouTube 10.7 23.1
Twitch 21.4 23.1
Painter 21.4 34.6

Sports Live 14.3 3.8
Google Meet 32.1 15.4

Table 4: Participants Response on the Most and Least Useful
Apps (Multiple choices were possible)

8.2 Study Scenarios
To evaluate FLUID-XP on diverse user scenarios, we carefully se-
lected five mobile apps and gave a short task scenario for each
of them. For YouTube, participants were asked to (1) search the
“related video” list and read the comments while a video is playing
in the full screen mode, (2) select one video from the list to play, and
(3) turn back to the full screen mode. For Twitch, they were asked
to (1) open the chat window while watching a streaming in the
full screen mode and (2) live chat with other viewers. For Painter,
they were asked to draw an animal using at least three different
pens and three different colors. For Sports Live, they were asked to
watch a soccer game using two features of the app: (1) a feature to
watch highlights (e.g., scoring a goal) while watching the live game
in the full screen mode and (2) a feature to watch a highlight in
different view angles. For Google Meet, they were asked to attend
an online class with their camera turned on to show their faces to
the instructor.

8.3 Results and Findings
While there were variations in the scores across apps, participants
thought FLUID-XP was high performance, useful, and satisfying.
As shown in Table 3, all apps scored over 3.5 for the perceived
performance and over 4 for satisfaction (0: very bad, 6: very good).
Also, the usefulness scores were positive across all apps (-3: not
useful at all, 3: very useful—compared to using a single device).

An interesting observation about the scores with YouTube is that
participants still gave a positive usefulness score for using FLUID-XP
while they were least satisfied with its performance. Satisfaction
score was also high, scoring 4.32 out of 6. This indicates that even
with low performance, users can still be satisfied and find it useful
to use FLUID-XP.

In the post survey, we asked participants to choose the most
and least useful apps from the study. The result is summarized
in Table 4. All three scores (perceived performance, usefulness,
and satisfaction) were high for the Sports Live app. Among 25
participants, only one participant thought it was the least useful
scenario. 32.1% of the people responded that Google Meet was the
most useful app to use in a multi-device environment. A notable
finding is that although the average usefulness of using FLUID-
XP for the Painter was the lowest, still 21.4% of the participants
thought it was the most useful app. Overall, participants had diverse
opinion onwhich appwas themost or the least useful. This indicates
that users may have varying preferences in how they use multiple
devices for a single app. Therefore, providing flexibility through
platforms like FLUID-XP would benefit from giving users the option
to choose their display across devices.

Below, we share some of the quotes from the participants to
help understand the use experience for each app. We note that
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participant number is up to 27 because two participants did not
finish the study due to technical issues.

YouTube: High usefulness and satisfaction scores despite low per-
ceived performance. P9 responded that “Having to switch from the
full screen to the small screen to browse the list of related videos
was always bothersome on a single device. When using a second de-
vice (to display the list of related videos), it was convenient because
I didn’t have to.” Similarly, P16 responded that “Reading comments
is one of the most entertaining aspects of watching YouTube, and
having a second device to read comments was satisfying enough to
accept performance deterioration to some degree.” These responses
indicate that the participants valued the usefulness and satisfaction
of using FLUID-XP to watch YouTube than the technical limitations
with the performance.

Twitch: It was a great experience, but I don’t think the interaction
was practical. P1 responded that “It was convenient to write chat
messages in the multi-device mode because the chat message and
keyboard were separated from the video, making it easy to watch
the video in full screen while typing.” However, a few pointed out
that it is not practical to use multi-device in watching entertaining
videos because they usually watch them in their bed or free time
while relaxing and it feels cumbersome to use two devices.

Painter: Contradicting results on the usefulness. P5 commented
that “It is a great advantage that the tool box doesn’t hide the canvas.
Also, one of the strengths is that a user can use both hands to draw
and change tools.” Similarly, P8 picked Painter as the most useful
app because “Among the five scenarios, Painter app best resolved
the limitation of using a single device”. On the other hand, P18 said
that "I think it would be more useful if the screen of a single device
is just larger, instead of moving the tool box to a different device."

Sports Live: No one hates to replay highlights while not missing
the live game. P12 commented that “It occasionally happens in live
sports that, while replaying a highlight, another highlight moment
is happening live. (Using two screens) is good because I can watch
replays without missing the live game.”

Google Meet: The most useful scenario. P7 responded that “During
online lectures due to COVID-19 pandemic, students access the
class with more than one devices because some features don’t work
on their main device. This causes delay and connection failures. It
seems useful because these limitations are resolved (when using
two devices but still in a single session).”

8.4 Points of Discussion
We summarize two interesting discussion points from the user
study. First, developers could use FLUID-XP to conduct rapid testing
of single-app multi-device functionality for their apps in the early
stages of their development.This is because FLUID-XP allows devel-
opers to immediately test themulti-device features of an unmodified
app originally developed for a single device, enables low-cost de-
velopment maintaining the single-device programming abstraction,
and provides support for deploying it quickly to a wider range
of real users regardless of their device platforms for early-stage
feedback. While early versions may not be perfect in terms of
performance and stabilization, users may still get a sense if the
interaction is useful and satisfying for them as our participants
did in our YouTube task scenario. Second, users may easily create

personalized multi-device interactions using FLUID-XP thanks to
its flexibility—allowing them to choose the interaction options that
best fit for them. From the user study, we found that people have
different perspectives on which multi-device interaction best fits
for them. This implies that a one-size-fits-all pattern for a single-
app multi-device interaction that is designed and provided by the
developers may not satisfy all users. FLUID-XP can help overcome
this limitation by letting users choose their own display.

Overall, we believe that our user study demonstrated the impact
of the technology powering FLUID-XP to be useful in various other
apps, such as stock trading apps, education apps, and gaming apps.

9 RELATEDWORK
App-Level Multi-Display Support. Some apps [20, 22, 37, 47]
are designed with multi-device support in mind. They are installed
individually on different devices and use cloud servers [22, 47] or
network pairing technology [20, 37] to synchronize among multiple
instances. However, it incurs considerable development costs for
multi-device support, and their multi-device use cases are limited
to the scenarios determined during the development phase. On the
other hand, FLUID-XP allows a user to select and distribute any UI
elements flexibly without requiring code modification.

ExistingUIDistributionMethods.There are a few approaches
that support the cross-device distribution of selective UI elements.
For instance, some multi-window desktop s (e.g., Adobe Photo-
shop [1], Microsoft Office [35]) allow to open multiple windows
(UIs), and some of such windows can be deployed to other devices
with wireless secondary display techniques (e.g., Apple Sidecar [7],
Duet Display [14]). However, they are applicable to only a small set
of multi-window apps. A recent study, FLUID [39], supports a wide
range of apps, but its applicability is restricted to Android platform
only. On the other hand, FLUID-XP can be applied to a wide range
of apps across heterogeneous platforms.

Cross-device Graphics pipelines. FLUID [39] is a system-
level solution for the Android platform that remotely renders UIs
through UI object serialization and transmission. Since all of the
computation is executed locally on guest devices, there is little or
no interaction delay and no visual degradation. However, FLUID
does not support heterogeneous platforms.

UIWear [56] and Sinter [10] perform guest-side rendering by
only transporting the graphical attributes of a UI to a guest device.
The UI is then reproduced on the guest-side to synchronize with the
host device’s display. Although they minimize network usage and
support heterogeneous platforms, they fail to achieve visual fidelity
since reproduced UIs differ from platform to platform. Furthermore,
they do not support multi-media UIs such as video UIs, which are
prevalent in today’s mobile apps.

VNC [41], THINC [8], and RDP [36] are remote display systems
that use custom display commands to transport display content
over the network. Such mechanisms allow a host to simply forward
the commands to a guest device and continue the rendering by
executing the commands on the guest-side. However, although this
method is efficient in representing the graphically simple UIs such
as text and buttons, it suffers from performance degradation, espe-
cially when representing display-intensive multimedia apps such
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as video playback [30]. This is because the above commands cannot
exploit the temporal correlation inside the multimedia content.

Miao et al. (2016) [34], Tan et al. (2010) [48], and Virtualized
Screen [33] propose pixel-based streaming approaches that only
encode and transport updated pixels. This reduces bandwidth usage
while maintaining visual fidelity across heterogeneous client de-
vices. However, identifying updated pixels requires pixel-by-pixel
analysis on each frame. Although theymanage to reduce the compu-
tation overhead by classifying the pixels into pre-defined categories
(e.g., text block, graphics block) and perform block-wise analysis,
the overhead is too high to be practical in mobile environments
with limited computational power.

Screen cast solutions such as Miracast [3], Airplay [5], Chrome-
cast [21], and many others [16, 18, 43, 49, 54] capture the screen of
one device and copies it onto a remote device’s screen. This sup-
ports heterogeneity with simple implementation but suffers from
high bandwidth usage and low visual fidelity due to the overhead
of compressing and transmitting each and every full-screen frame
as well as updating the entire frame buffer for each new frame.

10 DISCUSSION
Additional Per-UIOptimizations.The current prototype of FLUID-
XP handles individual UI elements differently based on their own
characteristics by optimizing only transmission protocols and ren-
dering points. However, if we replace the existing proprietary en-
coder stack with a customized one, the flexible system architecture
of FLUID-XP makes it possible to orthogonally apply additional
per-UI optimization techniques related to encoding schemes. For
example, FLUID-XP can optimize some encoding parameters such
as bit rates, key-frame intervals, and resolutions, considering the
features of each UI. We leave the exploration of such extra opti-
mizations as part of our future work.

Unsupported Legacy Apps. FLUID-XP cannot support legacy
apps that use separate UI rendering engines (e.g., Unity [51], We-
bKit [55]) such as 3D games or web apps because they do not create
intermediate UI trees which are commonly used in mobile plat-
forms. UI elements of such apps are managed through internal data
structures provided from the app-level UI engines. This feature
makes it impossible for FLUID-XP to manipulate UI trees and ap-
ply per-UI rendering and optimization techniques. However, the
app-level engines also have similar UI tree structures and graphics
pipelines internally, so if we can modify them, the proposed design
of FLUID-XP can be comprehensively applied to them.

Scroll Interaction Optimization. In our usability study, we
received feedback from participants that they experienced a slight
delay in response while scrolling through the YouTube’s list of re-
lated videos on a guest device. We then examined this phenomenon
more closely and observed that such scrolling generates and trans-
mits a bulk of frames. There may be two approaches to address this
problem. One approach is pre-caching that speculatively renders
the next frames of scrollable UIs, pushes them to the guest device,
and caches them there. Typically, we can predict next frames be-
cause the user’s scrolling direction determines them. Therefore,
FLUID-XP can leverage pre-caching to hide some rendering, encod-
ing/decoding and network delays. The second option is to reduce
the number of frames generated by scrolling while skipping some

frames. This raises an open question of how many frames can be
skipped without compromising user experience. We leave it as
future work to explore these approaches in depth.

Applying FLUID-XP to Other Systems. Although the current
prototype of FLUID-XP is specialized for Android, its general de-
sign is applicable to other mobile platforms. FLUID-XP is designed
under the key assumption that UI elements are managed by a tree
structure and can be assigned to a virtual display with a multi-stage
graphics pipeline. This assumption is a common design paradigm
of GUI-based systems, so we can apply our system design to differ-
ent systems while addressing the following issues. i) Providing a
single-display illusion. Most mobile systems provide tree structures
(e.g., UIView hierarchy [6] on iOS) to manage UI elements at the
platform level, as in Android. Thus, we can provide a single-display
illusion by duplicating the original tree as the two types of UI trees
(i.e., logical & guest trees). ii) Applying a split-pipeline architecture.
Most mobile systems provide special APIs (e.g., UIWindow [6] on
iOS) for creating a virtual display. These APIs allow us to easily
apply a split-pipeline model by assigning a target UI to a virtual
display. Furthermore, it is possible to utilize the proposed per-UI
optimizations for each UI.

Cross-device I/O Sharing.M2 [2] introduces a system design
for sharing I/O between devices with heterogeneous platforms.
The key idea is to create a virtual device driver that exchanges
raw input data between devices. Inspired by this design, FLUID-
XP implements a similar approach for handling user’s key events,
allowing full utilization of the native input methods of a guest
device. For instance, when the EditText UI gets migrated to a guest
device, the key input method of the guest device (e.g., voice input
for a smartwatch, handwriting recognition for a tablet) is triggered.
All other I/O devices (e.g., sensors, speakers) can be similarly shared
between devices.

11 CONCLUSION
We have designed and implemented FLUID-XP, a novel multi-device
system that supports innovative cross-device interaction across
heterogeneous platforms (i.e., Android, iOS). FLUID-XP selectively
partitions individual UI elements of unmodified apps and distributes
them across multiple devices in a platform-independent way, en-
abling per-UI optimization according to the unique characteris-
tics of individual UI elements. Our prototype implementation has
proven that FLUID-XP successfully supports highly flexible and
transparent UI distribution for a wide range of real-world apps,
demonstrating high responsiveness and platform independence. In
addition, our user study results show the effectiveness of FLUID-XP
with real users based on their quantitative and qualitative feedback.
We expect FLUID-XP to foster the development of novel apps that
advance multi-device user experience to the next level.
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