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Figure 1: Overview of our approach. (a) The robot captures the scene using its depth sensor. (b) A human operator initializes
the object pose using a mouse, followed by pose estimation from our machine estimator, which utilizes the object geometry
model to render scenes and refine until convergence. (c) The robot performs object manipulation using the registered pose.

ABSTRACT
Reliable, efficient shared autonomy requires balancing human oper-
ation and robot automation on complex tasks, such as dexterous
manipulation. Adding to the difficulty of shared autonomy is a
robot’s limited ability to perceive the 6 degree-of-freedom pose of
objects, which is essential to perform manipulations those objects
afforded. Inspired by Monte Carlo Localization, we propose a gen-
erative human-in-the-loop approach to estimating object pose. We
characterize the performance of our mixed-initiative 3D registra-
tion approach using 2D pointing devices via a user study. Seeking
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an analog for Fitts’s Law for 3D registration, we introduce a new
evaluation framework that takes the entire registration process into
account instead of only the outcome. When combined with esti-
mates of registration confidence, we posit that mixed-initiative
registration will reduce the human workload while maintaining or
even improving final pose estimation accuracy.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); • Computing methodologies → Artificial intelli-
gence.

KEYWORDS
pose estimation, human-in-the-loop, shared autonomy, affordances,
Monte Carlo localization
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1 INTRODUCTION & RELATEDWORK
Dexterous manipulation of objects in unstructured environments
requires robots to estimate object poses accurately enough to reason
about the possible manipulations actions it affords. With the advent
of accurate and low-cost 3D sensors, object pose estimation has
become an increasingly well-studied area of research, with new
methods ranging from using multiple view geometry, comparison
based on object-3D reconstruction, or registration using Monte
Carlo and particle filtering, having been introduced [6, 24, 31].
Despite this interest, the current limitations of pose estimation
remains a critical bottleneck to creating robust and reliable robotic
systems [6, 25]. Hence, human input is needed to bridge the gap.

Unfortunately, direct teleoperation by a human is not feasible
because deployed systems are often intricate, making manual oper-
ation burdensome and tedious. To make matters worse, 3D regis-
tration tasks are often performed via 2D pointing devices (e.g., a
joystick or mouse), which are often unintuitive and require more
cognitively demanding multi-step effort to achieve the desired in-
put – a fact that is particularly problematic during long-duration,
continuous operation of the type often required of many robotic
systems. This difficulty means that the skill-level necessary for
human operators to reliably and efficiently estimate object poses is
high, making human operators scarce and errors unavoidable, as
reported by DARPA Robotics Challenge teams [2, 19].

Shared autonomy grasping has been demonstrated with RViz
interactive markers1 by Gossow et al. [12]. Other work has also
introduced shared autonomy approaches to assist human operators
in performing various tasks [1, 4, 5, 13, 21, 26, 28, 29]. Affordance-
based representations for shared autonomy have been used to op-
erate robots when manual control is infeasible, such as over poor
communication channels [7, 9, 20]. Reinforcement learning meth-
ods have been used to learn affordances [10, 15, 16]. Fitzpatrick et
al. demonstrated that a robot could learn affordances for pushing
and grasping objects through exploration [10]. However, learning-
based approaches are often limited by specific environments and
datasets, which can be costly to collect on a large scale.

LabelFusion [23], proposed by Marion et al., leverages both hu-
man and machine computation to tackle the problem of 3D object
pose estimation. It allows a user to register an object model by
selecting three points in the reconstructed 3D scene using a robotic
visualization interface [22] and subsequently performs machine ob-
ject registration based on the points selected by the user. However,
one-shot point selection can pose a challenge to novice users since
finding appropriate registration points may require multiple steps
of inspection, especially in a cluttered 3D scene. Instead, our system
considers object registration as a gradual process so that users at
different skill levels can choose to operate at their own rates.

1http://wiki.ros.org/rviz

Therefore, to achieve pose estimation with less human effort, we
propose a human-in-the-loop approach that balances human opera-
tion and robot autonomy by leveraging both human and machine
perception. Our approach leverages the concept of mixed-initiative
interaction [17] to reduce tedious and cumbersome tasks for human
operators while maintaining high accuracy by allowing automa-
tion to take over when it is able. In our system, human operators
begin to perform a coarse initialization until the machine is suffi-
ciently confident that it is able to take over to refine object pose.
The human operator would then be able to take back over and
further refine the machine’s estimate if they saw fit. The key to
enabling our hybrid approach is a pose estimation method inspired
by Monte Carlo localization [8] that generates multiple hypotheses
of object pose initialized by a human operator and then refines them
over successive iterations, akin to sequential Bayesian filtering. We
evaluate our approach via a user study, which recruits both expert
and novice users to validate that the benefits of our method apply
to operators of different skill levels. To understand the trade-offs
of approaches like ours, we propose a new way to view human-
in-the-loop registration performance that takes into account the
performance curve over the course of the task, instead of just the
quality of the outcome.

One potential use case for our approach could be data annotation,
as it can be used out-of-the-shelf and does not require the a priori
training of data-driven models. When a robot can autonomously
execute actions based on the object’s affordances once the object’s
pose is determined, we believe that our results and analysis shed
light on improving efficiency and ease-of-use of systems that facili-
tate better human-robot collaboration.

2 APPROACH: SHARED AUTONOMY POSE
REGISTRATION

We first overview our shared autonomy pose estimation system, as
illustrated in Fig. 1. The estimation process is composed of two steps:
i) human initialization and ii) snap-to-grid (STG) registration using
Monte Carlo Localization (MCL). Note that localization indicates
both the translation and rotation of an object in this paper.

Human Initialization. The robot’s depth sensor captures the scene
(Fig. 1a), and the acquired depth image can be visualized as a point
cloud. A human operator then moves an object model to align it
with the corresponding object in the point cloud using a 2D pointing
device (here, a mouse) and an interactive 3D viewer (Fig. 1b). The
details of the initialization process are in Sec. 3.

Pose Estimation. Our pose estimator refines the object pose given
the human initialization. Given a depth image, Zd , from the robot
sensor, we model the problem as a joint distribution P(q,qu ,o,Zd ),
where q is the six degrees of freedom (DoF) object pose in the world
frame, qu is the human-initialized pose, and o is the known object
with its 3D geometry model (Fig. 1b). Therefore,

P(q,qu ,o,Zd ) = P(q | qu ,o,Zd ) P(qu ,o,Zd ) ∝ P(q | qu ,o,Zd )
(1)

where P(qu ,o,Zd ) is the observation prior. Essentially, our system
aims to find the optimal pose that maximizes the joint probability
in Eq. 1, such that

q∗ = argmax
q

P(q | qu ,o,Zd ) (2)
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Monte Carlo Localization. To estimate the optimal object pose, q∗,
we use the particle-based local search, which is a simplified version
of the method used in [30]. This local search method is inspired
by [8], which relies on a set ofM weighted samples, {q(i), w(i)}Mi=1,
to represent multiple hypotheses that indicate the object poses and
update the weights over iterations.

Given an object class o and its geometry model д, we can render
a depth image with the intrinsic matrix of the robot’s sensor. The
depth image is further converted to a point cloud, Zr . Initial hy-
potheses for this search are sampled from a Gaussian distribution.
The mean is set to the human initialized pose, qu . To evaluate each
sample hypothesis, we first crop the point cloud Zr based on the
corresponding sample pose. The hypotheses are then measured by
the agreement between the rendered point cloud and the observed
point cloud. We define the similarity between two point clouds as
the following Inliers function,

Inliers(p,p′) =

{
1, if ∥p − p′∥2 < ϵ

0, otherwise
(3)

where p is a point in the observed point cloud Zd , and p′ is a point
in the rendered point cloud, Zr , and ϵ is a pre-determined threshold.
This Inliers function is applied to the entire point cloud such that:

I (i) =
∑

a,b ∈z(i )
Inliers(Zr (a,b),Z

(i)
d (a,b)) (4)

where i indicates a sample, a and b are 2D indices in the observed
point cloud Zd . Here, the weightw of each pose hypothesis, q(i), is
defined as,

W (q(i)) = α ∗
I (i)

Nb
+ β ∗

I (i)

Nr
(5)

where Nb is the number of matched points in the observed point
cloud Zd , Nr is the number of matched points in the rendered point
cloud Zr , and α , β are pre-determined coefficients. The first term
in Eq. 5 estimates the similarity between the rendered point cloud
and the observed point cloud. The second term mitigates the noise
caused by human initialization and environment by comparing the
number of matched points with itself. By employing importance
sampling [32], we reassign a new weight to each sample at each
iteration.

3 EXPERIMENTAL SETUP
Our implementation is built upon the Robot Operating System
(ROS) [27]. We use affordance template framework (AT) [14, 18],
which is based on Rviz [14], to perform object registration tasks2.

To compute the trajectory between two end-effector waypoints,
we utilized TracIK planner [3]. Our manipulation experiments are
performed by a Fetch mobile manipulator3. For particle-based local
search, we implement our approach using CUDA4 and use a total
number of 625 particles to best utilize CUDA memory. We run 640
iterations for each registration task.

We conducted a user study with 16 undergraduate and graduate
students at the University of Michigan. Eight of them are considered
to be experts due to their familiarity with RViz or other relevant 3D

2http://traclabs.com/projects/affordance-templates/
3http://fetchrobotics.com/research/
4https://developer.nvidia.com/about-cuda

registration tools. The other eight participants are considered to be
novices since they have no prior experience with 3D registration
or manipulation tools. We instructed the participants to complete
the registration tasks in four scenes, and for each scene, they were
asked to perform the task in two modes — accurate mode and quick
mode. In accurate mode, the participants need to register the 3D
object model as accurately as possible, while in quick mode, they
were asked to register as quickly as possible. We randomized the
order of the tasks to avoid learning effects.

Because 3D controls, such as the ones used by RViz, only allow
human operators to move along one DoF at a time, extracting
the raw human registered pose at each timestep will not properly
reflect the overall progression of the human registration process.
Therefore, we broke down the human registration process according
to click actions (since the participants need to use click-and-drag
to perform registration) and reconstruct them based on their DoF.
To obtain the ground truth pose of each scene, we calculated the
average of the final human registered poses in accurate mode.

To evaluate our system, we use the human registration result as
our baseline condition, which consists of two modes (accurate and
quick) and no autonomy. Given the human initialized poses from
human registration, our shared autonomy system approximates the
target pose using particle-based local search, and we call this condi-
tion snap-to-grid, or STG. Instead of measuring only the final result,
we take the entire registration process into account. This analysis
is inspired by Fitts’s law [11], which relates human performance
on a pointing task (measured as time-taken) with the difficulty of
the pointing task itself (measured as a function of target size and
distance from cursor) via a logarithmic function. Our framework de-
fines an equivalent task by fixing the object’s distance and defining
a target as the registration error margin, which has 6 DoF. In other
words, Fitts’s law does not directly describe the mouse movement in
our registration task because the human operators must interleave
the controls in all DoF during the registration tasks due to the lower
dimensionality of the input device (2 DoF) compared to the input
task (6 DoF). Further, target size — which does not formally exist
in the problem of pose estimation — is really a measure of “input
equivalence” (e.g., anywhere on a button is equally valid to click).
We thus use an acceptable error margin in place of target size in our
analysis. Fig. 2 shows the performance curves with our adaptation
of Fitts’s law. The error margin represents the tolerance from the
ground truth pose, and the timestep indicates the amount of time
required to reach the error margin. Given the reconstructed regis-
tration process, we can capture the pose at every 0.5 seconds and
measure the difference between the current pose and the ground
truth pose as the error margin. By computing Euclidean distance of
translation and geodesic distance of rotation, we observe how the
registration progression is gradually approaching the ground truth
pose. Note that all curves in Fig. 2 are averaged across all scenes
and all participants within each subject group.

4 RESULTS
We first compare the STG condition (blue curves in Fig. 2) with
the baseline condition (red curves in Fig. 2) and find that STG
can consistently improve translation registration performance in
the early stage of registration. Fig. 2a and Fig. 2b illustrate that
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(a) Quick Registration Translation Error (b) Accurate Registration Translation Error

(c) Quick Registration Rotation Error (d) Accurate Registration Rotation Error

Figure 2: We compare the result of human registration (red curves) with STG (blue curves) for two subject groups (novice and
expert) in both quick mode and accurate mode. The x-axis represents the registration error margin from the ground truth
pose, and the left y-axis represents the amount of time needed to reach an error margin. The shaded area, together with the
right y-axis, indicates the remaining number of human operators at a given error margin.

the performance of STG performs at least equal to or better than
human registration. The vertical curves in Fig. 2 suggest that the
registered pose never reaches the specified accuracy level in the
given condition, as most of the novice operators in Fig. 2a cannot
reach 0.05 error margin (red shaded area in Fig. 2a). Our shared
autonomy system can take over the quick registration task and help
the novice operators improve registration accuracy, as indicated by
the blue curve and blue shaded area in Fig. 2a.

For rotation error, our approach did not help improve the final
accuracy, as shown in Fig. 2c and Fig. 2d. However, STG reduces
rotation error after the object reaches 90 degree error margin. This
is due to the fact that the 3D sensor only captured a portion of
the object in the point cloud, whereas STG uses the complete 3D

object model to perform particle-based local search. Therefore, if the
rotation error margin is too large or too small, our inliers function
(Eq. 4) cannot properly measure the difference between the object
model and the object point cloud, potentially leading STG to get
stuck in a local optimum.

This result suggests that the best practice for the human opera-
tors is to focus on rotation registration, while our particle-based
local search method helps reduce translation error in order to bal-
ance between human effort and registration accuracy. We believe
the analysis, which is inspired by Fitts’s law and made possible by
Fig. 2, can be applied to other tasks that involve 3D registration
with 2D pointing devices.
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5 CONCLUSION
We present a human-in-the-loop approach to improving object pose
estimation. Our work addresses the critical bottleneck of estimating
object pose in unstructured environments for manipulation. Our
experiments show that Monte Carlo Localization (MCL) method
can utilize human initialization to bootstrap the registration process
and estimate object pose by proposing multiple hypotheses and
resampling based on observation. Through shared autonomy, we
can balance between human effort and pose estimation accuracy.
We demonstrate this via a performance analysis approach inspired
by Fitts’ Law, which indicates where and when our new approach
can be expected to positively augment human performance. Here,
analysis helps to inform the design of systems using our approach,
but it can also be used to assess future shared autonomy systems
with similar goals.

Our approach does not require 3D scene reconstruction, nor does
it require any training data. Thus, it can be used out-of-the-box
regardless of whether the scene is known in advance. We believe
that our findings will facilitate better shared autonomy design
between humans and robots.
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